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• Classification is the task of assigning objects to one 
of several predefined categories. 

• It is an important problem in many applications 
 Detecting spam email messages based on the message 

header and content. 
 Categorizing cells as malignant or benign based on the 

results of MRI scans. 
 Classifying galaxies based on their shapes. 

Classification 



• The input data for a classification task is a collection 
of records. 

• Each record, also known as an instance or example, is 
characterized by a tuple (x, y) 

• x is the attribute set 
• y is the class label, also known as category or target 

attribute. 
• The class label is a discrete attribute. 

Classification 



• Classification is the task of learning a target function f 
that maps each attribute set x to one of the 
predefined class labels y. 

• The target function is also known informally as a 
classification model. 

Classification 



• A classification technique (or classifier) is a 
systematic approach to perform classification on an 
input data set. 

• Examples include 
 Decision tree classifiers 
 Neural networks 
 Support vector machines 

Classification 



• A classification technique employs a learning 
algorithm to identify a model that best fits the 
relationship between the attribute set and the class 
label of the input data. 

• The model generated by a learning algorithm should 
 Fit the input data well and 
 Correctly predict the class labels of records it has never 

seen before. 

• A key objective of the learning algorithm is to build 
models with good generalization capability. 

Classification 



• First, a training set consisting of records whose class 
labels are known must be provided. 

• The training set is used to build a classification 
model. 

• This model is subsequently applied to the test set, 
which consists of records which are different from 
those in the training set. 

Classification 



• Evaluation of the performance of the model is based 
on the counts of correctly and incorrectly predicted 
test records. 

• These counts are tabulated in a table known as a 
confusion matrix. 

• Each entry fij in this table denotes the number of 
records from class i predicted to be of class j. 

Confusion matrix 



Predicted Class 

Class=1 Class=0 

Actual 
Class 

Class=1 f11 f10 
Class=0 f01 f00 

Confusion matrix 



• The total number of correct predictions made by the 
model is f11+f00. 

• The total number of incorrect predictions is f10+f01. 

Confusion matrix 



• The information in a confusion matrix can be 
summarized with the following two measures 
 Accuracy 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑓11 + 𝑓00

𝑓11 + 𝑓10 + 𝑓01 + 𝑓00
 

 Error rate 

𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟 =
𝑓10 + 𝑓01

𝑓11 + 𝑓10 + 𝑓01 + 𝑓00
 

• Most classification algorithms aim at attaining the 
highest accuracy, or equivalently, the lowest error 
rate when applied to the test set. 

Confusion matrix 



• We can solve a classification problem by asking a 
series of carefully crafted questions about the 
attributes of the test record. 

• Each time we receive an answer, a follow-up 
question is asked. 

• This process is continued until we reach a conclusion 
about the class label of the record. 

Decision tree 



• The series of questions and answers can be 
organized in the form of a decision tree. 

• It is a hierarchical structure consisting of nodes and 
directed edges. 

• The tree has three types of nodes 
 A root node that has no incoming edges, and zero or more 

outgoing edges. 
 Internal nodes, each of which has exactly one incoming 

edge and two or more outgoing edges. 
 Leaf or terminal nodes, each of which has exactly one 

incoming edge and no outgoing edges. 

Decision tree 



• In a decision tree, each leaf node is assigned a class 
label. 

• The non-terminal nodes, which include the root and 
other internal nodes, contain attribute test 
conditions to separate records that have different 
characteristics. 

Decision tree 



• Classifying a test record is straightforward once a 
decision tree has been constructed. 

• Starting from the root node, we apply the test condition. 
• We then follow the appropriate branch based on the 

outcome of the test. 
• This will lead us either to 

 Another internal node, for which a new test condition is 
applied, or 

 A leaf node. 
• The class label associated with the leaf node is then 

assigned to the record. 

Decision tree 



• Efficient algorithms have been developed to induce a 
reasonably accurate, although suboptimal, decision 
tree in a reasonable amount of time. 

• These algorithms usually employ a greedy strategy 
that makes a series of locally optimal decisions about 
which attribute to use for partitioning the data. 

Decision tree construction 



• A decision tree is grown in a recursive fashion by 
partitioning the training records into successively 
purer subsets. 

• We suppose 
 Un is the set of training records that are associated with 

node n. 
 C={c1, c2,…, cK} is the set of class labels. 

Decision tree construction 



• If all the records in Un belong to the same class ck, then n 
is a leaf node labeled as ck. 

• If Un contains records that belong to more than one 
class, 
 An attribute test condition is selected to partition the records 

into smaller subsets. 
 A child node is created for each outcome of the test condition. 
 The records in Un are distributed to the children based on the 

outcomes. 

• The algorithm is then recursively applied to each child 
node. 

Decision tree construction 



• For each node, let p(ck) denotes the fraction of 
training records from class k. 

• In most cases, the leaf node is assigned to the class 
that has the majority number of training records. 

• The fraction p(ck) for a node can also be used to 
estimate the probability that a record assigned to 
that node belongs to class k. 

Decision tree construction 



• Decision trees that are too large are susceptible to a 
phenomenon known as overfitting. 

• A tree pruning step can be performed to reduce the 
size of the decision tree. 

• Pruning helps by trimming the tree branches in a way 
that improves the generalization error. 

Decision tree construction 



• Each recursive step of the tree-growing process must 
select an attribute test condition to divide the 
records into smaller subsets. 

• To implement this step, the algorithm must provide 
 A method for specifying the test condition for different 

attribute types and 
 An objective measure for evaluating the goodness of each 

test condition. 

Attribute test 



• Binary attributes 
 The test condition for a binary attribute generates two 

possible outcomes. 

Attribute test 



• Nominal attributes 
 A nominal attribute can produce binary or multiway splits. 
 There are 2N-1-1 ways of creating a binary partition of N 

attribute values. 
 For a multiway split, the number of outcomes depends on 

the number of distinct values for the corresponding 
attribute. 

Attribute test 



 

Attribute test 



• Ordinal attributes 
 Ordinal attributes can also produce binary or multiway 

splits. 
 Ordinal attributes can be grouped as long as the grouping 

does not violate the order property of the attribute values. 

Attribute test 



• Continuous attributes 
 The test condition can be expressed as a comparison test 

v≤T or v>T with binary outcomes, or 
 A range query with outcomes of the form Tj≤v< Tj+1, for 

j=1,…,J 
 For the binary case 

 The decision tree algorithm must consider all possible split 
positions T, and 

 Select the one that produces the best partition. 

 For the multiway split, 
 The algorithm must consider multiple split positions. 

Attribute test 



 

Attribute test 



• Example: credit risk estimation 
• An individual’s credit risk depends on such attributes 

as credit history, current debt, collateral and 
income. 

• For this example, there exists a decision tree which 
can correctly classify all the objects. 

Decision tree construction: Example 



 

Decision tree construction: Example 



 

Decision tree construction: Example 



• In a decision tree, each internal node represents a 
test on some attribute, such as credit history or 
debt. 

• Each possible value of that attribute corresponds to a 
branch of the tree. 

• Leaf nodes represent classifications, such as low or 
moderate risk. 

Decision tree construction: Example 



 

Decision tree construction: Example 



• Suppose income is selected as the root attribute to 
be tested. 

• This partitions the example set as shown in the 
figure. 

Decision tree construction: Example 



• Since the partition {1,4,7,11} consists entirely of 
high-risk individuals, a leaf node is created. 

Decision tree construction: Example 



• For the partition {2,3,12,14} 
 credit history is selected as the attribute to be tested. 
 This further divides this partition into {2,3}, {14} and {12}. 

 

Decision tree construction: Example 



• Each attribute of an instance contributes a certain 
amount of information to the classification process. 

• We measure the amount of information gained by 
the selection of each attribute. 

• We then select the attribute that provides the 
greatest information gain. 

Information theoretic test 



• Information theory provides a mathematical basis for 
measuring the information content of a message. 

• We may think of a message as an instance in a 
collection of possible messages. 

• The information content of a message depends on 
 The size of this collection 
 The frequency with which each possible message occurs. 

Information theoretic test 



• The amount of information in a message with 
occurrence probability p is defined as -log2p. 

• Suppose we are given  
 a collection of messages, C={c2, c2,….., cK} 
 the occurrence probability p(ck) for each ck. 

• We define the entropy I as the expected information 
content of a message in C: 

𝐼 = −�𝑝 𝑐𝑘 log2 𝑝 𝑐𝑘

𝐾

𝑘=1

 

• The information is measured in bits. 

Information theoretic test 



• We can measure the information content of a set of 
training instances from the probabilities of 
occurrences of the different classes. 

• In our example 
 p(high risk)=6/14 
 p(moderate risk)=3/14 
 p(low risk)=5/14 

Information theoretic test 



• The set of training instances is denoted as U 
• We can calculate the information content of the tree 

using the previous equation 

     𝐼 𝑈 = − 6
14

log2
6
14

− 3
14

log2
3
14

− 5
14

log2
5
14

 

               = − 6
14

−1.222 − 3
14

−2.222 − 5
14

−1.485  

               = 1.531 bits 

Information theoretic test 



• The information gain provided by making a test at a 
node is the difference between 
 The amount of information needed to complete the 

classification before performing the test. 
 The amount of information needed to complete the 

classification after performing the test. 

• The latter is defined as the weighted average of the 
information in all its subtrees. 

Information theoretic test 



• If we select attribute P, with N values, this will 
partition U into subsets {U1,U2,…,UN}. 

• The average information required to complete the 
classification after selecting P is 
 

     𝐼 ̅ 𝑃 = ∑ 𝑈𝑛
𝑈
𝐼(𝑈𝑛)𝑁

𝑛=1  

Information theoretic test 



• The information gain from attribute P is computed as 
follows. 
 𝑔𝑔𝑔𝑔 𝑃 = 𝐼 𝑈 − 𝐼(̅𝑃) 

• If the attribute income is chosen, the examples are 
partitioned as follows: 
 {1,4,7,11} 
 {2,3,12,14} 
 {5,6,8,9,10,13} 

Information theoretic test 



• The expected information needed to complete the 
classification is 
 

     𝐼 ̅ 𝑖𝑖𝑖𝑖𝑖𝑖 = 4
14
𝐼 𝑈1 + 4

14
𝐼 𝑈2 + 6

14
𝐼(𝑈3) 

                          = 4
14

0.0 + 4
14

1.0 + 6
14

0.650  

                          = 0.564 bits 

Information theoretic test 



• The information gain can be computed as follows: 
 

       𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼 𝑈 − 𝐼(̅𝑖𝑖𝑖𝑖𝑖𝑖) 
                                    = 1.531 − 0.564 
                                    = 0.967 bits 

Information theoretic test 



• Similarly, we can show that 
 gain(credit history)=0.266 
 gain(debt)=0.063 
 gain(collateral)=0.207 

• The attribute income will be selected, since it 
provides the greatest information gain. 

Information theoretic test 



• If attribute P has continuous numeric values v, we 
can apply a binary test. 

• The outcome of the test depends on a threshold 
value T. 

• There are two possible outcomes: 
 v≤T 
 v>T 

• The training set is then partitioned into 2 subsets 
U1and U2. 

Continuous attributes 



• We apply sorting to values of attribute P to result in 
the sequence {v1, v2,…, vR}. 

• Any threshold between vr and vr+1will divide the set 
into two subsets 
 {v1, v2,…, vr} 
 {vr+1, vr+2,…, vR} 

• There are R-1 possible splits. 

Continuous attributes 



• For r = 1,…, R-1, the corresponding threshold is 
chosen as Tr = (vr+vr+1)/2. 

• We can then evaluate the gain in information for 
each Tr 

𝑔𝑔𝑔𝑔 𝑃, 𝑇𝑟 = 𝐼 𝑈 − 𝐼(̅𝑃, 𝑇𝑟) 
where 𝐼(̅𝑃, 𝑇𝑟) is a function of Tr. 

• The threshold Tr which maximizes gain(P, Tr) is then 
chosen. 

Continuous attributes 



• The measures developed for selecting the best split 
are often based on the degree of impurity of the 
child nodes. 

• Besides entropy, other examples of impurity 
measures include 
 Gini index 

𝐺 = 1 −�𝑝 𝑐𝑘 2
𝐾

𝑘=1

 

 Classification error 
𝐸 = 1 − max

𝑘
𝑝(𝑐𝑘) 

Impurity measures 



• In the following figure, we compare the values of the 
impurity measures for binary classification problems. 

• p refers to the fraction of records that belong to one 
of the two classes. 

• All three measures attain their maximum value when 
p=0.5. 

• The minimum values of the measures are attained 
when p equals 0 or 1. 

Impurity measures 



 

Impurity measures 



• Impurity measures such as entropy and Gini index 
tend to favor attributes that have a large number of 
possible values. 

• In many cases, a test condition that results in a large 
number of outcomes may not be desirable. 

• This is because the number of records associated 
with each partition is too small to enable us to make 
any reliable predictions. 

Gain ratio 



• To solve this problem, we can modify the splitting 
criterion to take into account the number of possible 
attribute values. 

• In the case of information gain, we can use the gain 
ratio which is defined as follows 

𝐺𝐺𝐺𝐺 𝑅𝑅𝑅𝑅𝑅 =
𝐺𝐺𝐺𝐺 𝑃
𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼

 

    where 

𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼 = −�
𝑈𝑛
𝑈

log2
𝑈𝑛
𝑈

𝑁

𝑛=1

 

Gain ratio 



• The test condition described so far involve using only 
a single attribute at a time. 

• The tree-growing procedure can be viewed as the 
process of partitioning the attribute space into 
disjoint regions. 

• The border between two neighboring regions of 
different classes is known as a decision boundary. 

Oblique decision tree 



• Since the test condition involves only a single 
attribute, the decision boundaries are rectilinear, i.e., 
parallel to the coordinate axes. 

• This limits the expressiveness of the decision tree 
representation for modeling complex relationships 
among continuous attributes. 

Oblique decision tree 



 

Oblique decision tree 



• An oblique decision tree allows test conditions that 
involve more than one attribute. 

• The following figure illustrates a data set that cannot be 
classified effectively by a conventional decision tree. 

• This data set can be easily represented by a single node 
of an oblique decision tree with the test condition x+y<1 

• However, finding the optimal test condition for a given 
node can be computationally expensive. 

Oblique decision tree 



 

Oblique decision tree 
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